Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 2): 118905, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604480

RESUMO

Persulfate oxidation (PS) is widely employed as a promising alternative for waste activated sludge pretreatment due to the capability of generating free radicals. The product differences and microbiological mechanisms by which PS activation triggers WAS digestion through multiple modes need to be further investigated. This study comprehensively investigated the effects of persulfate oxidation activated through multiple modes, i.e., ferrous, zero-valent iron (ZVI), ultraviolet (UV) and heat, on the performance of sludge digestion. Results showed that PS_ZVI significantly accelerated the methane production rate to 12.02 mL/g VSS. By contrast, PS_Heat promoted the sludge acidification and gained the maximum short-chain fatty acids (SCFAs) yield (277.11 ± 7.81 mg COD/g VSS), which was 3.41-fold compared to that in PS_ZVI. Moreover, ferrous and ZVI activated PS achieved the oriented conversion of acetate, the proportions of which took 73% and 78%, respectively. MiSeq sequencing results revealed that PS_Heat and PS_UV evidently enriched anaerobic fermentation bacteria (AFB) (i.e., Macellibacteroides and Clostridium XlVa). However, PS_Ferrous and PS_ZVI facilitated the enrichment of Woesearchaeota and methanogens. Furthermore, molecular ecological network and mantel test revealed the intrinsic interactions among the multiple functional microbes and environmental variables. The homo-acetogens and sulfate-reducing bacterial had potential cooperative and symbiotic relationships with AFB, while the nitrate-reducing bacteria displayed distinguishing ecological niches. Suitable activation modes for PS pretreatments resulted in an upregulation of genes expression responsible for digestion. This study established a scientific foundation for the application of sulfate radical-based oxidation on energy or high value-added chemicals recovery from waste residues.

2.
Environ Sci Technol ; 58(6): 2847-2858, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38299532

RESUMO

Synergistic control of the risks posed by emerging antimicrobials and antibiotic resistance genes (ARGs) is crucial for ensuring ecological safety. Although electrogenic respiration can enhance the biodegradation of several antimicrobials and reduce ARGs accumulation, the association mechanisms of antimicrobial biodegradation (trimethoprim, TMP) with the fate of the antimicrobial resistome remain unclear. Here, the biotransformation pathway of TMP, microbial associations, and functional gene profiles (e.g., degradation, antimicrobial resistance, and electron transfer) were analyzed. The results showed that the microbial electrogenic respiration significantly enhanced the biodegradation of TMP, especially with a cosubstrate sodium acetate supply. Electroactive bacteria enriched in the electrode biofilm positively correlated with potential TMP degraders dominated in the planktonic communities. These cross-niche microbial associations may contribute to the accelerated catabolism of TMP and extracellular electron transfer. Importantly, the evolution and dissemination of overall ARGs and mobile genetic elements (MGEs) were significantly weakened due to the enhanced cometabolic biodegradation of TMP. This study provides a promising strategy for the synergistic control of the water ecological risks of antimicrobials and their resistome, while also highlighting new insights into the association of antimicrobial biodegradation with the evolution of the resistome in an electrically integrated biological process.


Assuntos
Microbiota , Trimetoprima , Trimetoprima/farmacologia , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
3.
Chemosphere ; 296: 133903, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35149007

RESUMO

Antibiotics in waste activated sludge (WAS) has drawn increasing attention because of their persistent and bioaccumulation characteristics. Most study illustrated the role of antibiotics in anaerobic fermentation from WAS, but lacking the analysis at microbial level as well as the possible interaction between them. This study investigated the effect of three sulfonamide antibiotics (sulfamethoxazole (SMX), sulfaquinoxaline (SQX), and sulfadiazine (SD)) on WAS fermentation and explored its microbiological mechanism. Results indicated that the production of short-chain fatty acids (SCFAs) was significantly improved by 1.9 folds with a peak value at 4626.1 mg COD L-1 in the existence of SD. This was attributed to the promoted release of soluble proteins and polysaccharides with the existence of sulfonamide antibiotics (SAs) as revealed by the excitation-emission matrix (EEM) spectrum. Analysis of microbial community structure showed that the total abundance of the fermenters in groups with SAs was1.2-1.6 times of that in Control. Specifically, the acid-forming genus Tissierella in SMX and SQX increased by 12.1%-15.0% compared with the Control, while the proteolytic genus Proteinivorax dominated in SD with 39.5%. Molecular ecological networks (MENs) analysis further revealed the potential cooperative relationships among different fermenters. This study was anticipated to provide some valuable information for the behavior of antibiotics in WAS fermentation.


Assuntos
Antibacterianos , Esgotos , Anaerobiose , Antibacterianos/farmacologia , Ácidos Graxos Voláteis , Fermentação , Concentração de Íons de Hidrogênio , Esgotos/química , Sulfadiazina , Sulfanilamida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA